Assn Learning Objective	A Day	B Day		Done
1.1	Class Procedures \& Pre-Assessment \& Linearity Review	Aug-20	Aug-21	
1.2	Train Tracks	Aug-22	Aug-23	
	Unit 1 Linearity EMT \& Study Guide Due	Aug-24	Aug-27	
2B4A	(give 2B4A review for solving equations)	Aug-24	Aug-27	

Targets	Sample Question	Ugh	Okay	Master
Compare slopes and intercepts from a combination of equations, graphs, and or tables.	Determine the slope and intercepts from the following equation, graph and or table. Describe and compare. Explain.			
Write equations from story problems in slope-intercept form.	An electrician charges a $\$ 25$ consultation fee plus $\$ 35$ per hour for labor. Write an equation in slope-intercept form for the total cost of a job that takes h hours.			
Understand parts of slope- intercept equations	Write an equation in slope-intercept form: a) Given slope and y-intercept b) Given two points c) Given slope and a point			
Write an equation for parallel lines through a given point.	Write an equation for a line parallel to 3 containing the point $(-3,6)$	$y=4 x+$		
Write an equation for a perpendicular line through a given point.	Write an equation for a line perpendicular to $y=$ $-\frac{3}{4} x+2$ that contains the point $(4,0)$			

Vocabulary and Terms:

Slope:
Slope-Intercept Form: $y=$ \qquad point (x, \ldots) y and x makes the \qquad m is \qquad b is

To be in slope-intercept form, " y " must be isolated and with a coefficient equal to
Y-Intercept: where x equals \qquad and crosses \qquad . Written as (\quad _,$b)$
X-Intercept: where y equals \qquad and crosses \qquad . Written as $\left(-\frac{b}{m}, \ldots\right)$)
Describe the Slopes of Parallel Lines:
Describe the Slopes of Perpendicular Lines:
The headings of a 4-Column Tables are \qquad $\underline{\square}$
 Dependent Variable:
Independent Variable:
A scale on a coordinate grid must be
\longrightarrow

Write an Equation of a Line from a Graph

1. Find the slope $(m), \frac{\text { rise }}{\text { run }}=$ \qquad
\qquad (Write as a point.)
2. Find the y-intercept, (where $x=0$).
3. Use the equation $y=m x+b$ and replace slope with m and b with the y intercept. Equation is
4. If the y-intercept is not an integer coordinate, find an integer point on the graph and use the slope and $y=m x+b$ to find the y -intercept.

4-Column Tables

Four-column tables reveal the pattern in an algebraic sequence. Headings are Input, Pattern, Output, Short Hand. Starting inputs at zero for linear patterns reveals the $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ form of a linear equation. For the graph on the last page,

X	Pattern	Y	Short Hand
0	-1	-1	$-1+5(0)$
1	$-1+5$	4	$-1+5(1)$
2	$-1+5+5$	9	$-1+5(2)$
X	$?$	Y	$-1+5(\mathrm{X})$

Make a 4-column table of the above starting with an input of 2 . (Do not go back to $\mathrm{x}=0$.)

What happens to your equation?
How can you fix the equation so that the data stays correct but the table STILL DOES NOT START AT 0 ?

What is your new equation? \qquad How could you prove that this equation also works?

EC. Recognizing this adjustment, what would be the equation given a slope of 3 and a point $(4,-7)$?

Write the Equation of a Line from a Table

1. Find the slope $(m), \frac{\text { change in } y}{\text { change in } x}=$ \qquad or \qquad
2. Find the y-intercept (b), (where $x=0$). Write it as a
 coordinate point (0 ,)
3. Extend the table to find the y intercept.
4. Use the equation to find the y-intercept in the box to the right.
5. Insert the slope and y-intercept intercept into the form $y=m x+b$
6. Equation is \qquad

Find Slope-Intercept Equations Given Two Points

1. Given the points $(2,6)$ and $(-4,9)$, find the slope.
2. Show to the right how to find the y-intercepts as in the box above. Y-intercept \qquad (Write as a coordinate.)
3. Insert into $y=m x+b$. Equation is \qquad

Find Slope-Intercept Equations Given the Slope and a Point

1. Given the slope of 3 and the point $(2,6)$, find the y intercepts as in the box above.
Y-intercept \qquad (Write as a coordinate.)
2. Insert into $y=m x+b$. Equation is \qquad

Graph and find the Equation of a Line Given 1 Point and the Slope

1. Given the point $(2,3)$ and a Slope of $-\frac{1}{3}$, plot the point.
2. The numerator is the Rise; the denominator is the Run. Draw the slope.
3. Find the y-intercept where $x=0$. The equation of the line is

Graph and find the Equation of a Line Given 2 Points.

1. Given the points $(-2,5)$ and $(3,-5)$, plot the points.
2. Find the slope. \qquad
3. Find the y-intercept: \qquad
4. Write the equation: \qquad

Graph and find the Equation of a Line Given an

OR
\qquad

1. Given the equation $y=-3 x+2$, find the y-intercept
2. Plot the slope. (See above.) Label this as line A.

3. Given the equation $4 x+5 y=20$, find the y-intercept (where $x=0$). \qquad
4. Find the x-intercept (where $y=0$). \qquad
5. Plot the intercepts and connect the points. Label this line B.

List x-intercept: \qquad y-intercept: \qquad

Write the Slope/Intercept Equation from a Story Problem

1. Cross out unnecessary information.
2. Draw a picture to SEE the math.
3. Define your variables. Be VERY \qquad .
4. Continue using the methods above.

Example: You supervise the construction of a roller coaster for young children. The platform to board the ride is 15 feet off the ground. Twenty feet up the track the car will be 55 feet off the ground. Write the equation of the path of the roller coaster for the first part of the ride.

X	Y

Variables:
Independent variable: "Distance down track" Dependent variable: "Height of the track" Rate of Change is: \qquad
The y-intercept is: $(0, \quad)$, because
Picture:

The equation is: \qquad
You solve: The snowiest day in the city of Bitterton ended with 128 inches of snow on the ground. When the storm started, there were 8 inches already on the ground. It snowed for a total of 6 hours. Write the equation that represents the number of inches that fell per hour.

Draw a picture:
Define your variables:

Find the slope: \qquad The y-intercept: \qquad The equation: \qquad

Parallel and Perpendicular Lines

Parallel Lines have slopes that are equal. (They always go in the same direction.)

Perpendicular Lines have slopes that are negative reciprocals (multiply to equal -1). They move in exact opposite directions at 90 degrees.

Find the slopes and CIRCLE whether the lines are parallel, perpendicular, or neither.
a) $y-4 x=5 \mathrm{~m}=$ \qquad
b) $y=4 x-3 \mathrm{~m}=$ \qquad
c) $y=-\frac{3}{6} x-6 \mathrm{~m}=$ $y+4=-\frac{1}{4} x+\overline{1 \mathrm{~m}=}$ \qquad $y-3=2(x+4) \mathrm{m}=$

$$
y=\frac{8}{2}(x+5) \mathrm{m}=
$$

Parallel/Perpendicular/Neither
Parallel/Perpendicular/Neither
Parallel/Perpendicular/Neither

Find the equations that are parallel and perpendicular to the line that passes through a given point.
Example: $y=2 x-5$, point $(3,-1)$

PARALLEL: slopes will be the same

1. Start with $y=2 x+b$, and insert point

$$
-1=2(3)+b \text {, so } b=-7
$$

2. Write the equation with slope and y -intercept.

$$
y=2 x-7
$$

PERPENDICULAR: slopes will be negative reciprocals, so $m=-\frac{1}{2}$

1. Start with $y=-\frac{1}{2} x+b$, and insert point

$$
-1=-\frac{1}{2}(3)+b, \text { so } b=\frac{1}{2}
$$

2. Write the equation with slope and y-intercept.

$$
y=-\frac{1}{2} x+\frac{1}{2}
$$

a) $y=\frac{1}{5} x-2$, point $(-5,-1)$

PARALLEL:

PERPENDICULAR:
PERPENDICULAR:

