Unit 6H: Solve Systems with Matrices Study Guide Name:
Per: \qquad
SHOW YOUR WORK FOR FULL CREDIT. NO WORK, NO CREDIT. NO WORK IN PEN.

Assn	Learning Objective	A Day	B Day	Done
6SG	Matrix System Study Guide			
6.1	Create a Matrix from a System \& vice versa	Nov 6	Nov-7	
6.2	Row Echelon Reduction	Nov-8	Nov 9	
6.3	Matrices of Steroids	Nov 12	Nov 13	
6.4	More Matrices on Steroids	Nov 14	Nov 15	
	Unit 6 EMT	Nov 16	Nov 19	

Targets	Sample	Ugh	Almost	Got it!	Assn
Create an augment matrix from the system.	$\left\{\begin{array}{c} y+\frac{3}{5} x=3 \\ y=-\frac{10}{5} x+6 \end{array}\right.$				6.1
Solving Systems of Equations with Matrices	Given $\left\{\begin{array}{c}y+\frac{3}{5} x=3 \\ y=-\frac{10}{5} x+6\end{array}\right.$, rewrite as an augmented matrix.				$\begin{aligned} & 6.2, \\ & 6.3 \end{aligned}$
Solve system using Row Echelon Reduction	Solve the following matrix using row echelon reduction. $\left[\begin{array}{ccc} 3 & 2 & -6 \\ 1 & 2 & 2 \end{array}\right]$				$\begin{aligned} & \hline 6.2, \\ & 6.3 \end{aligned}$
Solve a system of equation from a story problem using row echelon.	Rachel and Zack purchase school supplies. Rachel buys 3 notebooks and 5 packages of pencils for $\$ 22.75$. Zack buys two notebooks and 3 packs of pencils for $\$ 14.25$. What's the cost of both items?				$\begin{aligned} & \hline 6.2, \\ & 6.3 \end{aligned}$

Vocabulary

Augmented Matrix \qquad
Elementary Row Operations:
Row Echelon \qquad
Additive Inverse \qquad
Multiplicative Inverse
Multiplicative Identity

Create a Matrix from a Story Problem.

Systems of equations can be solved using \qquad or elimination. Augmented matrices can be solved like a \qquad of equations. Write the system as described in Unit 3 Systems. If an equation is in slope-intercept \qquad , rewrite it in standard form aligning the coefficients as if for elimination in Standard Form ($\mathrm{A} x+\mathrm{B} y=\mathrm{C}$). (It does not matter which variable comes first but must be the same order for both equations.). In elimination, make one of the coefficients " 0 " to solve for the other variable. Write the coefficients of the \qquad into an augmented matrix.

Rachel buys 2 notebooks and 3 packages of pencils for $\$ 12$. Zack buys four notebooks and returns 2 packs of pencils and pays $\$ 20$. How much does a notebook and package of pencils cost?

Complete the equations for the story problem above. $\left\{\begin{array}{l}-x+3 y=_ \\ 4 x-\ldots y=_\end{array}\right.$

Below shows one way to solve comparing Elimination to Row Echelon Reduction of the above.

System of Equations	Process	Matrix
$\left\{\begin{array}{l} 2 x+3 y=12 \\ 4 x-2 y=20 \end{array}\right.$	1. Place the constants and answers from the equations in Standard Form into the rows of an \qquad matrix.	$\left[\begin{array}{ccc}2 & 3 & 12 \\ 4 & -2 & 20\end{array}\right]$
$\left\{\begin{array}{c} -4 x-6 y=-24 \\ 4 x-2 y=20 \end{array}\right.$	2. Eliminate the number in the next row by multiplying the first row $\left(r_{1}\right)$ by a number that would add/subtract with the next row.	$\left[\begin{array}{ccc}-4 & -6 & -24 \\ 4 & -2 & 20\end{array}\right]$
$\left\{\begin{array}{l} 2 x+3 y=12 \\ 0 x-8 y=-4 \end{array}\right.$	3. Add/Subtract the two \qquad together to eliminate the first element in the second row.	$\left[\begin{array}{ccc}3 & 4 & 12 \\ 0 & -8 & -4\end{array}\right]$
$\left\{\begin{array}{l} 1 x+1.5 y=6 \\ 0 x-8 y=-4 \end{array}\right.$	4. Divide the first row by \qquad to make the coefficient of x equal to \qquad -.	$\left[\begin{array}{ccc}1 & 1.5 & 6 \\ 0 & -8 & -4\end{array}\right]$
$\left\{\begin{array}{c} 1 x+1.5 y=6 \\ 0 x+1 y=\frac{1}{2} \end{array}\right.$	5. Make the second element in the second row/second column into a \qquad by multiplying or dividing.	$\left[\begin{array}{ccc} 1 & 1.5 & 6 \\ 0 & 1 & \frac{1}{2} \end{array}\right]$
$\left\{\begin{array}{c} 1 x+1.5 y=6 \\ 0 x-1.5 y=-.75 \end{array}\right.$	6. Multiply or divide the second row to make the elements the same in the first row \qquad column.	$\left.\left[\begin{array}{cc}1 & 1.5 \\ 0 & -1.5\end{array}\right) \begin{array}{c}6 \\ -75\end{array}\right]$
$\left\{\begin{array}{c} 1 x+0 y=4.25 \\ 0 x-1.5 y=-.75 \end{array}\right.$	7. Add/subtract the rows together to eliminate the element in the \qquad row second column.	$\left[\begin{array}{ccc}1 & 0 & 4.25 \\ 0 & -1.5 & -.75\end{array}\right]$
$\left\{\begin{array}{c} 1 x+0 y=4.25 \\ 0 x+1 y=.50 \end{array}\right.$	8. Divide the second row to make the second element equal \qquad The first row of this matrix shows that one x and 0 y's equals 4.25 . The second row shows that 0 x 's and one y and equals 0.5 .	$\left[\begin{array}{lll}1 & 0 & 4.25 \\ 0 & 1 & 0.50\end{array}\right]$
$\mathrm{x}=4.25, \mathrm{y}=.50$	9. Notebooks cost ___ each and __ cost \$0.50.	$x=4.25, \mathrm{y}=.50$

Matrices can be used to solve any size system. For example, a system with 3 equations with 3 would make (with answers) a 3 X \qquad augmented matrix. Regardless of the size, it is often easiest to line up the " 1 's" in a diagonal with the zeros where the first column represents the x 's, the second the y 's, the third, the z 's, etcetera.

Dependent Systems (Infinite Solutions)

- When the equations are added/subtracted, all elements will equal \qquad .
- This system of equations will have \qquad solutions.

Given the system $\left\{\begin{array}{l}12 x+3 y=6 \\ 6 x+1.5 y=3\end{array}\right.$, write it in a matrix and solve by
 row echelon reduction:

Inconsistent Systems (Parallel Lines)

- When solving, all coefficients will become zeros because they have the \qquad slope.
- The "answer" column will have different values which indicates there are different y-
- The system of equations will have \qquad solutions.
Given: $\left\{\begin{array}{l}12 x+3 y=8 \\ 6 x+1.5 y=3\end{array}\right.$, write the augmented matrix and
 solve using row echelon reduction.

Solving a system of equations using matrices practice.

Two students solved the following system using matrices. $\left\{\begin{array}{c}3 x+y=7 \\ 4 x+2 y=10\end{array}\right.$

Abby solved it this way. Explain or write each step she took.
$\left[\begin{array}{ccc}3 & 1 & 7 \\ 4 & 2 & 10\end{array}\right]$
$\left[\begin{array}{ccc}3 & 1 & 7 \\ 4 & 2 & 10\end{array}\right]$
[]
$\left[\begin{array}{ccc}3 & 1 & 7 \\ -2 & 0 & -4\end{array}\right]$
$\left[\begin{array}{lll}3 & 1 & 7 \\ 1 & 0 & 2\end{array}\right]$
[]
$\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 2\end{array}\right]$

Show a different way to solve for the same answer.

Explain how your matrix was different:

Solving Systems with Inverse Matrices

Multiplicative inverses make 1's. The inverse of 2 is $\frac{1}{2}$. The inverse of $-\frac{3}{4}$ is $-\frac{4}{3}$. Given $2 x=10$, to make the coefficient 2 into the multiplicative identity 1 , multiply both sides of the equation by the multiplicative inverse $\left(\frac{1}{2}\right)$.

The system $\left\{\begin{array}{c}3 x+2 y=6 \\ x+4 y=2\end{array}\right.$ can be written as the matrix equation $\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}6 \\ 2\end{array}\right]$. This system could be solved by multiplying by the \qquad of $\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right]$. Multiplying the coefficient matrix $\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right]$ by its inverse would result in the identity matrix $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. This would mean that the coefficient of x in the first equation is now 1 and the coefficient of the y is 0 . The coefficient of x in the second equation is 0 and the coefficient of the y is 1 . Aligning these with the answer matrix (after multiplying by the inverse) gives the solution to the system.

Finding Inverse Matrices

To solve the system, find the multiplicative identity $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. Using the system above, multiply $\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right]$ by $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. This gives two new systems $\left\{\begin{array}{l}3 a+\ldots=1 \\ -c=0\end{array}\right.$ and $\left\{\begin{array}{l}-{ }_{-}+2 d=0 \\ b-\ldots=\ldots\end{array}\right.$. Solve these two systems for a, b, c, and d using matrices.

Plugging your solutions for a, b, c, and d into the matrix yields $\left[\begin{array}{cc}\frac{2}{5} & \frac{-1}{5} \\ \frac{-1}{10} & \frac{3}{10}\end{array}\right]$. Multiply both sides of the matrix equation by the inverse matrix. SYW.

$$
\left[\begin{array}{cc}
\frac{2}{5} & \frac{-1}{5} \\
\frac{-1}{10} & \frac{3}{10}
\end{array}\right]\left[\begin{array}{ll}
3 & 2 \\
1 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
\frac{2}{5} & \frac{-1}{5} \\
\frac{-1}{10} & \frac{3}{10}
\end{array}\right]\left[\begin{array}{l}
6 \\
2
\end{array}\right]
$$

Write your final solution. \qquad
Examine the inverse matrix $\left[\begin{array}{cc}\frac{2}{5} & \frac{-1}{5} \\ \frac{-1}{10} & \frac{3}{10}\end{array}\right]$. Note that each of the elements of the matrix have a divisor of 10. Factoring out $\frac{1}{10}$ from each element leaves $\frac{1}{10}\left[\begin{array}{cc}4 & -2 \\ -1 & 3\end{array}\right]$. (Multiplied together, it yields the inverse.) The 10 in the $\frac{1}{10}$ is called the determinant. How could you quickly calculate the determinant? (See your notes from class.)

The matrix $\left[\begin{array}{cc}4 & -2 \\ -1 & 3\end{array}\right]$ is called the Adjunct, Adjoint, or Adjugate Matrix. How do the numbers in the Adjunct Matrix relate to your original matrix from your system?

Using the hints/short cut above, find the inverse matrix for
$\left[\begin{array}{ll}2 & 9 \\ 5 & 4\end{array}\right]$
$\left[\begin{array}{ll}3 & 2 \\ 7 & 5\end{array}\right]$
$\left[\begin{array}{ll}6 & 4 \\ 3 & 2\end{array}\right]$

Inverse Matrices Practice

Solve the following systems using Inverse Matrices.
$\left\{\begin{array}{c}5 x-6 y=-14\end{array}\right.$
$\{3 x+4 y=22$

$$
\left\{\begin{array}{c}
2 x+4 y=6 \\
4 x-5 y=-22
\end{array}\right.
$$

