Sec 1H Opener for January 8, 2019 f(x) = 2x - 6 g(x) = x + 4 |(x + 4)1. What is VERTICAL SHIFT for g(x)? 2. What is VERTICAL STRETCH for f(x)? 3. What is HORIZONTAL SHIFT for f(x)? 2(x-3) + 34. Write f(x)g(x). f(X)G(X) = (2X - 6)(X + Y)5. What are the x-intercepts for f(x)g(x)? (3,0) (-4,0) Bonus: What is the y-intercept? (0, -24)

8.2H Lines are a Changin'

SHOW YOUR WORK. WORK IN PENCIL.

Name Questions???

- 1. Use the graph below of the functions to answer the questions.
 - a. Fill in the table from the graph below for f(x) and g(x)
 - b. Plot the points for f(x) + g(x) in one color and f(x)g(x) in a different color.
 - c. What kind of graph is made by f(x) + g(x)?
 - d. Write the equation for f(x) + g(x)?
 - e. Where does $f(\mathbf{x}) = g(\mathbf{x})$?
 - f. Write the equation for *f*(x):
 - g. What is the y-intercept for *f*(x):_____
 - h. Where do you see this in your equation?
 - i. Look at the graph, what's the x-int for *f*(x): _____
 - j. Change your equation to expose the x-int by factoring out the slope to look like: $y = m(x + \frac{b}{m})$.
 - k. Write the equation for *g*(x):_____
 - 1. What is the slope for g(x):
 - m. Where do you see this in your equation?
 - n. What is the x-intercept for g(x):
 - o. Change your equation to show the x-intercept._____
 - p. What is f(4) + g(4)?
 - q. What kind of graph is made by f(x)g(x)?
 - r. What are your x-intercepts for f(x)g(x)
 - s. Write an equation in factored form for *f*(x)*g*(x) based on "q" above._____
 - t. What is g(-2)f(-2)?

u.	The main a table of values using the equation.
	From the parent graph $f(x) = x$:
b.	What is the vertical stretch of $h(x)$?
c.	Where do you see the vertical stretch in the equation?
d.	What is the vertical shift of $h(\mathbf{x})$?
e.	Where do you see the vertical shift in the equation?

- f. Factor out the slope for h(x).
- g. What is the horizontal shift of h(x)?
- h. Where do you see the horizontal shift in the equation?
- i. What change would happen if x became (x+3), or h(x+3)?
- j. How would you make all the points on the line move down 8 units?
- k. Write the equation for your new line above:
- 1. Show your equation that would show your new x-intercepts ______
- m. How would the vertical stretch change?_____

х	$f(\mathbf{x})$	<i>g</i> (x)	$f(\mathbf{x}) + g(\mathbf{x})$	$f(\mathbf{x}) g(\mathbf{x})$
-2				
-4				
2				
0				
-5				
4				

 $h(\mathbf{x})$

-2

3.	Compare the <u>three</u> equations $f(\mathbf{x}) = 5\mathbf{x} + 15$ and $d(\mathbf{x}) = 3\mathbf{x} + 6$ and $f(\mathbf{x}) + d(\mathbf{x})$.
1	a. How you would express $f(x) + d(x)$ as an equation?
	b. Which of the three equations has the greatest vertical shift?
	c. How do you know?
	d. Factor the vertical stretch from all three equations:
	e. Which equation has the greatest horizontal shift left?
1	f. How do you know?
1	g. Which equation has the greatest vertical stretch?
]	h. How do you know?
4.	Given the equations $f(x) = 2x + 5$ and $d(x) = 3x + 2$, find:
	a. $f(x) + d(x) =$ g. Write an equation (do not
	e. Write an equation (do not solve) for $\frac{f(x)}{x}$
	b. $f(x) - d(x) =$ solve) for $f(x)d(x)$
	c. if $x = 1$ $f(x) + d(x) =$ h. If $x = 2, \frac{f(x)}{f(x)} =$
	f If $\mathbf{x} = -1$ $f(\mathbf{x}) d(\mathbf{x}) =$
d.	If $x = 2$, $f(x) - d(x) =$
5.	Given the equations $f(x) = x + 4$ and $d(x) = 2x + 5$, find:
;	a. $f(x) + d(x)$ d. $f(-2) - d(3)$ g. Write an equation (do not
	solve) for $\frac{f(x)}{d(x)}$
1	b. $f(x) - d(x)$ e. Write an equation (do not $d(x)$
	solve) for $f(x)d(x)$
	c. $f(1) + d(2)$ h. $\frac{d}{d(1)}$
	f. $f(4) \times d(2)$
	^y †
6.	Mrs. Burton took her pet snail to Boston to enroll her at
	MIT. While on the commons, Esmargo crept to the top of the
	dome in the quad at point $(1, 6)$.
;	a. Describe the path Esmargo took if she crept along the
	slope triangle of the grid below.
l	b. Using math, what happened to the x value? 0
	c. What happened to the y value?
	d. Write this shorthand in a coordinate point:
(e. What distance did Esmargo slither if she climbed up the hypotenuse of your slope triangle
	f From the dome. Esmargo decided to rest under the
	little tree at $(-5, -6)$. Describe her path (using the -10 -5 0 5 10
	math notation as above)

g. How far did she slither from the top of the dome to under the tree? SYW._____

675 g. How far did she slither from the top of the dome to under the tree? SYW.

Multiplying Polynomials

There are four methods we will show you.

- Stacking Method
- Box Method
- Distributive Method
- FOIL

STACKING METHOD

2. (4s + 3)(s - 7) $4s^2 - 25s - 21$

BOX METHOD

2.
$$(r+1)(r+6)$$

 $r^2 + 7r + 6$

DISTRIBUTIVE METHOD

To distribute means to multiply every term in the parentheses. The same applies to binomials and polynomials.

 $6(x - 2) = 6^*x - 6^*2 = 6x - 12$

FOIL

<u>First Outside Inside Last</u>

This is just a specific application of binomials and the distributive property.

1. (x + 3)(x - 1)

2. (2x - 1)(x - 4)

Your Turn

Using the method of your choice, multiply the following:

1. (3x + 2)(x + 5)

2. (x + 12)(x + 2)

Bonus: (2x²+4x+5)(3x²+x+9) SHOW WORK!