\qquad Per: \qquad

Determine the common ratio (sometimes called the multiplier) for each growth or decay rate.

1. 5% growth
2. 12% decay
3. 98% decay
4. 1% decay
5. 300% growth
6. 0.85% growth

For the following, write an equation and then calculate the expected price in the year $\mathbf{2 0 2 0}$ if you assume that there was a $\mathbf{3 \%}$ increase inflation rate and the given price is from 1998.
7. Big Mac, $\$ 1.85$
a. Equation: \qquad
b. Expected price: \qquad
8. Movie Admission, $\$ 5.00$
a. Equation:
b. Expected price: \qquad
10. Small Car, $\$ 6,000$
a. Equation:
b. Expected price: \qquad
12. $f(x)=1.5(1.01)^{x}$

CIRCLE: Growth OR Decay
Initial amount \qquad
Multiplier \qquad
Find $f(1)=$ \qquad
What's the percent of growth/decay \qquad
13. You buy a new computer for $\$ 2,100$ and you used your Amazon credit card at 24% compound annual interest.
a. CIRCLE: Growth OR Decay
b. What is the initial amount \qquad
c. What is the multiplier (common ratio)
d. Make a table for years $1-4$, then plot the points on the graph.

e. Write an explicit equation for \boldsymbol{t} years.

f. What is the cost of the loan after 14 years? \qquad
14. In 2015 Mason's mom bought him an iPhone 6 s for $\$ 599$. Now it's been five years and Mason's phone is seriously out of date. Mason decides to sell the phone on KSL and needs to figure out a fair price so he assumes it depreciated at a rate of 16.5% per year.
a. Write an explicit equation to calculate the worth of his phone. \qquad
b. What is his phone worth today (2020)?
c. How much will the phone be worth in 2022 if Mason keeps the phone?

Solve the following problems.

15. E. coli bacteria double in population every thirty minutes. The initial population is 85 .
a. Write an Explicit Eq: \qquad b. Write a Recursive Eq:
\qquad
c. What is the population of bacteria after three hours? \qquad After one day?
16. You decide to deposit $\$ 5,000$ at 24% compound interest per year.
a. Write an Explicit Eq:
b. Write a Recursive Eq:
c. How much will you have after one year? \qquad Three years? \qquad
17. The population of Bloom Falls, Mass. (population 937) is slowly increasing by 4.5% each year.
a. Write an Explicit Eq: \qquad b. Write a Recursive Eq:
\qquad
c. What is the population after 3 years? \qquad
18. You bought a Boston Whaler in 2004 for $\$ 12,500$. The boat's value depreciates by 7% a year.
a. Write an Explicit Eq: \qquad b. Write a Recursive Eq: \qquad
c. How much is the boat worth now (2020 ? \qquad
d. What will it be worth in 2025? \qquad
19. The sloth is trying to get to fruit that is 20 feet away. Each day the sloth gets 50% closer to the fruit.
a. Write an Explicit Eq: \qquad b. Write a Recursive Eq: \qquad
c. How close will the sloth be in 3 days? \qquad
d. How many days until the sloth arrives at the fruit? \qquad
Explain: \qquad
Many types of items depreciate in value with time like the value of your car or the value of the phone in your pocket. If you purchased the following items in 2012 for the price listed below and assuming $\mathbf{7 \%}$ depreciation per year. Answer the following.
20. Cell phone: $\$ 550.00$
a. Recursive Equation: \qquad
b. Explicit Equation: \qquad
c. Value of phone this year: \qquad
d. When will the phone be worth $\$ 0$ \qquad
Explain: \qquad
21. Used car: $\$ 8000.00$
a. Recursive Equation:
b. Explicit Equation:
c. Value of car this year: \qquad

Given the same circumstances as above, answer the following if they depreciated by $\mathbf{1 1 . 5 \%}$ per year.

22. Cell phone: $\$ 550.00$

a. Explicit Equation: \qquad
b. How much would the phone be worth today? \qquad
a. Explicit Equation:
b. How much would the car be worth today? \qquad

