Opener for January 29, 2019

Given the following points: $(1,2)$ and $(2,6)$

1. Make a table for the ARITHMETIC sequence for these points (add the next 2 terms).
a. Write the recursive equation
b. Write the explicit equation.
2. Make a table for the GEOMETRIC sequence for these points (add the next 2 terms)
a. Write the recursive equation
b. Write the explicit equation.
i. Can you write two of them?
3. Sketch a graph of the two functions

Questions???

9.4H Linear OR Exponential

Name: \qquad Per: \qquad SHOW YOUR WORK AND WORK IN PENCIL

Complete the following tables. Graph type: Linear, Exponential, Parabola or other

Answer the following based on the given information.

13. Fill in the table for both the Arithmetic and Geometric sequences

	1	2	3	4	5
Arithmetic	5				405
Geometric	5				405

14. Write equations for each sequence in the table above.

Arithmetic:

Geometric:
a. Recursive: \qquad d. Recursive:
b. Slope-intercept:
e. Explicit using $f(0)$: \qquad
c. Explicit: \qquad f. Explicit using $f(1)$: \qquad

Using the graphs, answer the following questions.

15. In graph A,
a. calculate the average rate of change for $\boldsymbol{g}(\boldsymbol{x})$ over the interval $[-5,0]$. \qquad
b. calculate the average rate of change for $\boldsymbol{g}(\boldsymbol{x})$ over the interval $[0,1]$.
c. Using the average rate of change above, which function is changing faster over the interval $[0,1]$? \qquad
16. In graph B,
a. calculate the average rate of change for $\boldsymbol{i}(\boldsymbol{x})$ over the interval $[-1,0]$. \qquad
b. calculate the average rate of change for $\boldsymbol{i}(\boldsymbol{x})$ over the interval $[0,5]$. \qquad -
c. Using the average rate of change above, which function is changing faster over the interval $[0,5]$? \qquad
17. In graph C ,
a. calculate the average rate of change for $\boldsymbol{j}(\boldsymbol{x})$ over the interval $[-1,0]$. \qquad -
b. calculate the average rate of change for $\boldsymbol{j}(\boldsymbol{x})$ over the interval $[0,1]$. \qquad
c. Using the average rate of change above, which function is changing faster over the interval $[-1,0]$? \qquad
18. Ellie is planning to pay $\$ 4000$ for a computer. She is trying to figure out which loan options is a better deal if she can make no payments on the computer for 5 years. She has two options:

Make a 4-column table for both options.
A. A simple interest loan where she pays the same 15% interest per year.
B. A compound interest loan where she pays 10% per year, but every year she has to pay interest on the total amount from the year before.
c. How much interest will Ellie pay for plan A on the $5^{\text {th }}$ year? \qquad
d. How much interest will Ellie pay for plan B on the $5^{\text {th }}$ year? \qquad
e. How much interest will Ellie pay in year 10 for plan A if she can't make payment until then? \qquad
f. How much interest will Ellie pay in year 10 for plan B if she can't make payment until then? \qquad
g. Which is the better deal? \qquad Explain:
9.4H Linear OR Exponential \# ${ }^{\text {YHOY YOUR WORK AND WORK }} 4$ in PENCIL

Complete the following tables. Graph type: Linear, Exponential, Parabola or other

13. Fill in the table for both
the Arithmetic and

	1	2	3	4	5
Arithmetic	5				405
Geometric	5				405

14. Write equations for

 each sequence in the table above.Arithmetic:
a. Recursive: \qquad d. Recursive:
e. Explicit using $f(0)$:
f. Explicit using $f(1)$: \qquad

Using the graphs, answer the following questions.

C.

15. In graph A ,
a. calculate the average rate of change for $\boldsymbol{g}(\boldsymbol{x})$ over the interval $[-5,0]$. \qquad
b. calculate the average rate of change for $\boldsymbol{g}(\boldsymbol{x})$ over the interval $[0,1]$.
c. Using the average rate of change above, which function is changing faster over the interval $[0,1]$? \qquad
16. In graph B,
. calculate the average rate of change for $\boldsymbol{i}(\boldsymbol{x})$ over the interval $[-1,0]$. \qquad
b. calculate the average rate of change for $\boldsymbol{i}(\boldsymbol{x})$ over the interval $[0,5]$.
c. Using the average rate of change above, which function is changing faster over the interval $[0,5]$? \qquad
17. In graph C ,
a. calculate the average rate of change for $\boldsymbol{j}(\boldsymbol{x})$ over the interval $[-1,0]$. \qquad
b. calculate the average rate of change for $\boldsymbol{j}(\boldsymbol{x})$ over the interval $[0,1]$. \qquad -
c. Using the average rate of change above, which function is changing faster over the interval $[-1,0]$? \qquad
18. Ellie is planning to pay $\$ 4000$ for a computer. She is trying to figure out which loan options is a better deal if she can make no payments on the computer for 5 years. She has two options:

Make a 4-column table for both options.
A. A simple interest loan where she pays the same 15% interest per year.

B. A compound interest loan where she pays 10% per year, but every year she has to pay interest
 on the total amount from the year before.
c. How much interest will Ellie pay for plan A on the $5^{\text {th }}$ year? \qquad
d. How much interest will Ellie pay for plan B on the $5^{\text {th }}$ year? \qquad
e. How much interest will Ellie pay in year 10 for plan A if she can't make payment until then? \qquad
f. How much interest will Ellie pay in year 10 for plan B if she can't make payment until then? \qquad
g. Which is the better deal? \qquad Explain:

Growth \& Decay

Anything that grows or decays exponentially, grows or decays by a fixed percent.

For exponential growth, the rate of change increases with time --- it grows faster and faster.

For exponential decay, the rate of change decreases with time --- the decaying slows down.

Many real world situations can be modeled by exponential functions.

Examples of exponential growth:	Examples of exponential decay:
*populations (rabbits, mice)	*radioactive substances
*bacteria and viruses (measles	*investments losing value
outbreak in Washington)	*metabolism of some medicines
*credit payments (interest)	*value of objects (cars, phones)
*investments increasing in value	

Saratoga Springs had a population of about 35,000 in 2018. If the population is growing at a rate of 11% then how many people will live here in...

1 year?

5 years?

10 years?

50 years?

Write an equation for any year.

How would the equation change if the population was decreasing instead of increasing?

Write a new equation.

For exponential growth, we use the formula

$$
f(t)=f(0)(1+r)^{t}
$$

where $f(t)$ is the final amount, $f(0)$ is the initial amount, r is the percent of change written as a decimal, and t is the number of time intervals (years, days, months, etc).

For exponential decay, we use the formula

$$
f(t)=a(1-r)^{t}
$$

where $f(t)$ is final amount, a is initial amount, r is the percent of change expresses as a decimal, and t is the number of time intervals.

If the common ratio is greater than $1,(\mathbf{r}>1)$
$\boldsymbol{f}(\mathbf{x})=\boldsymbol{f}(0) r^{\boldsymbol{x}}$ has a graph that goes up to the right and is increasing or growing.

If $\mathbf{0}<r<\mathbf{1}, \boldsymbol{f}(\mathbf{x})=\boldsymbol{f}(0) r^{\boldsymbol{x}}$ has a graph that goes down to the right and is decreasing or decaying.

Growth \& Decay

