Unit 8H Function Operations Study Guide

Name: ______

-	
Dor	•
IUI	•

Assn	Learning Objective	A Day	B Day	Done
8SG	Function Operations Study Guide			
8.1	Function Addition and Subtraction	Jan 3	Jan 4	
8.2	Lines Are a Changin'	Jan 7	Jan 8	
8.3	Multiplying Binomials	Jan 9	Jan 10	
8R	Function Operations Review	Jan 11	Jan 14	
	Unit 8 EMT	Jan 15	Jan 16	

Targets	Sample Question	Struggle	Help	OK	Yeah	Assn
Add and Subtract	Given $f(x) \& g(x)$, find $f(x) + g(x)$ OR $(f+g)(x)$					8.1,
Functions	algebraically and graphically. Show the relation to a table.					8.2
Multiply	Give $f(x) = 3x + 5$ and $g(x) = 5x + 5$.					8.2-R
Expressions	Find $f(\mathbf{x})g(\mathbf{x})$					
Shifts (Vertical &	Given a linear equation, identify the vertical and					1.1,
Horizontal)	horizontal shifts from the parent graph					8.1-R
Vertical Stretch	Given an equation, identify the vertical stretch					8.1-R

Vocabulary

Parab	ola:	
D ·	• •	

 Binomial

 Vertical Shift:

Horizontal Shift:

Vertical Stretch:

Adding/Subtracting Functions

Lines have only one dimension. Adding or subtracting lines results in a new ______. The input (x) gives an output f(x). Adding the outputs would be the same as adding the two functions.

Add/Subtract functions in a table by performing the operation on the values. Complete the table to the right then use that table to fill in the table below.

	Slope	Y-int	Equation
$f(\mathbf{x})$			
$g(\mathbf{x})$			
$f(\mathbf{x}) + g(\mathbf{x})$			
$f(\mathbf{x}) - g(\mathbf{x})$			

Graph and label the four equations from the table on the grid. Note that the function can be ______ or subtracted on a graph by using the outputs.

Transformations

The "parent graph of a linear equation is y = x. (In the parent equation, the slope is _____ and the y-intercept is _____.

To shift the parent equation vertically (up/down), add or ______ a y-intercept. From the parent graph, write the equation for a line with a vertical shift of + 9. _____.

The slope of a linear parent graph is 1/1. Altering the rate of change "stretches" or "smooshes" the rise compared to the run (1). Another name for slope is "vertical _____" as the rise is "stretched" compared to the parent graph. (Non-linear graphs can also be "stretched".) In the equation for the graph above, y = 3x - 6, the vertical stretch is _____ or 3/1.

Applying a vertical shift to a parent graph will also shift it horizontally right or left depending on whether the slope is positive or ______. On the graph above, the equation has a vertical shift of -6 and a slope of 3. The graph also "shifted" horizontally from the origin +2 units (to the right). You can expose the inverse of the horizontal shift in an equation by factoring out the slope. For y = 3x - 6, $y = 3(x - ___)$.

Multiplying Functions

Multiplying two one-dimensional figures (linear equations) results in a two dimensional figure (or second degree polynomial). (Remember, "When you multiply, you add dimensions."). The resultant graph is ______ a **parabola**.

Write the expression for f(x)g(x) showing the factors to be multiplied. _(____)(____)

Stack It Method:	Box Method:	Distribution Method:	FOIL Method
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4x 32	(x + 4)(x + 8) = x(x + 8) + 4(x + 8) = x ² + 8x + 4x + 32	(First, Outside, Inside, Last)
$\frac{x^2 + 4x}{x^2 + 12x + 32}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	FIND: (x + 5)(x – 3)	(x + 4)(x + 8) FIND: $(x + 3)(x - 4)$

Multiplying Linear Equations on a Graph.

As in adding linear equations by adding outputs on a graph, multiplying linear outputs reveals the parabolic outputs on the graph.

Given the two lines g(x) = 3x + 3 and p(x) = -2x + 4, complete the table. Graph the two lines. Multiply the individual linear outputs to find the **parabolic outputs**.

Х	$g(\mathbf{x})$	<i>p</i> (x)	$g(\mathbf{x}) p(\mathbf{x})$
	0		
		0	
0			

Note that the parabola has two xintercepts: (, 0) & (, 0)

Multiply the equations using any method above. Check your table by multiplying the equations in your calculator: