Unit 8H Function Operations Study Guide
Name:
Per: \qquad

Assn Learning Objective	A Day	B Day	Done	
8SG	Function Operations Study Guide			
8.1	Function Addition and Subtraction	Jan 3	Jan 4	
8.2	Lines Are a Changin'	Jan 7	Jan 8	
8.3	Multiplying Binomials	Jan 9	Jan 10	
8R	Function Operations Review	Jan 11	Jan 14	
	Unit 8 EMT	Jan 15	Jan 16	

Targets	Sample Question	Struggle	Help	OK	Yeah	Assn
Add and Subtract Functions	Given $\mathrm{f}(\mathrm{x}) \& \mathrm{~g}(\mathrm{x})$, find $\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})$ OR $(f+g)(x)$ algebraically and graphically. Show the relation to a table.					8.1, 8.2
Multiply Expressions	Give $f(\mathrm{x})=3 \mathrm{x}+5$ and $g(\mathrm{x})=5 \mathrm{x}+5$. Find $f(\mathrm{x}) g(\mathrm{x})$					$8.2-\mathrm{R}$
 Horizontal $)$	Given a linear equation, identify the vertical and horizontal shifts from the parent graph..					1.1, $8.1-\mathrm{R}$
Vertical Stretch	Given an equation, identify the vertical stretch					$8.1-\mathrm{R}$

Vocabulary

Parabola: \qquad
Binomial \qquad
Vertical Shift: \qquad Horizontal Shift: \qquad
Vertical Stretch:

Adding/Subtracting Functions

Lines have only one dimension. Adding or subtracting lines results in a new
\qquad . The input (x) gives an output $f(\mathrm{x})$. Adding the outputs would be the same as adding the two functions.

Add/Subtract functions in a table by performing the operation on the values. Complete the table to the right then use that table to fill in the table below.

x	$f(\mathrm{x})$	$g(\mathrm{x})$	$f(\mathrm{x})+g(\mathrm{x})$	$f(\mathrm{x})-g(\mathrm{x})$
1	6		12	0
2	9	8		1
3	12		22	2
4		12		3
5		14	32	

	Slope	Y-int	Equation
$f(\mathrm{x})$			
$g(\mathrm{x})$			
$f(\mathrm{x})+g(\mathrm{x})$			
$f(\mathrm{x})-g(\mathrm{x})$			

Graph and label the four equations from the table on the grid. Note that the function can be \qquad or subtracted on a graph by using the outputs.

Transformations

The "parent graph of a linear equation is $\mathrm{y}=\mathrm{x}$. (In the parent equation, the slope is
\qquad and the y -intercept is \qquad .

To shift the parent equation vertically (up/down), add or \qquad a yintercept. From the parent graph, write the equation for a line with a vertical shift of +9 . \qquad _.

The slope of a linear parent graph is $1 / 1$. Altering the rate of change "stretches" or "smooshes" the rise compared to the run (1). Another name for slope is "vertical \qquad " as the rise is "stretched" compared to the parent graph. (Non-linear graphs can also be "stretched".) In the equation for the graph above, $\mathrm{y}=3 \mathrm{x}-6$, the vertical stretch is \qquad or 3/1.
Applying a vertical shift to a parent graph will also shift it horizontally right or left depending on whether the slope is positive or \qquad . On the graph above, the equation has a vertical shift of -6 and a slope of 3 . The graph also "shifted" horizontally from the origin +2 units (to the right). You can expose the inverse of the horizontal shift in an equation by factoring out the slope. For $\mathrm{y}=3 \mathrm{x}-6, \mathrm{y}=3(\mathrm{x}-$ \qquad).

Multiplying Functions

Multiplying two one-dimensional figures (linear equations) results in a two dimensional figure (or second degree polynomial). (Remember, "When you multiply, you add dimensions."). The resultant graph is \qquad a parabola.

Find the equation for $f(\mathrm{x})$: \qquad

$$
g(\mathrm{x}):
$$

\qquad
Vertical shift of $f(\mathrm{x})$? \qquad Vertical stretch of $f(\mathrm{x})$? \qquad
Write the equation for $f(\mathrm{x})$ that exposes the horizontal shift: \qquad
Vertical shift of $g(\mathrm{x})$? \qquad Vertical stretch of $\mathrm{g}(\mathrm{x})$? \qquad
Write the equation for $g(x)$ that exposes the horizontal shift: \qquad

x	$f(\mathrm{x})$	$g(\mathrm{x})$	$f(\mathrm{x}) g(\mathrm{x})$
-5	-9	-1	9
-4		0	0
-3	-3		-3
-2	0	2	
-1		3	9

Write the expression for $f(\mathrm{x}) g(\mathrm{x})$ showing the factors to be multiplied. \qquad)(\qquad)

Multiplying Linear Equations on a Graph.

As in adding linear equations by adding outputs on a graph, multiplying linear outputs reveals the parabolic outputs on the graph.

Given the two lines $g(\mathrm{x})=3 \mathrm{x}+3$ and $p(\mathrm{x})=-2 \mathrm{x}+4$, complete the table. Graph the two lines. Multiply the individual linear outputs to find the parabolic outputs.

x	$g(\mathrm{x})$	$p(\mathrm{x})$	$\mathrm{g}(\mathrm{x}) p(\mathrm{x})$
	0		
		0	
0			

$$
\text { Note that the parabola has two } \mathrm{x} \text { - }
$$ intercepts: $(, 0) \&(, 0)$

Multiply the equations using any method above. Check your table by multiplying the equations in your calculator:

