\qquad Per: \qquad
SHOW YOUR WORK. WORK IN PENCIL.
Due Date: January $28^{\text {th }} / 29^{\text {th }}$

1. Gavin needs to get into shape to attract Lacey. He keeps track of the number of pushups in the chart to the right if he starts with day 1.
a. Fill in the four column table with the number of push-ups he does each day.

n	Pattern	$g(n)$	Shorthand
1			
2			
3			
4			
5			

b. Assuming the pattern continues, how many push-ups will he do on day 8 ? \qquad
c. Is this pattern arithemetic? \qquad Explain \qquad
d. What is the slope? \qquad What is the y-intercept? \qquad
e. Write a recursive equation \qquad
f. Write an explicit equation to show how many push-ups Gavin will do on day n. \qquad
2. His friend, Phillip decides to start by doing 1 push-up on the first day. The next day, he doubles the number of push-ups. He continues to double the number of push-ups each day.
a. Fill in the four column table with the number of push-ups Phillip does.

n	Pattern	$p(n)$	Shorthand
1			
2			
3			
4			
5			

b. What is the slope? \qquad What is the y-intercept? \qquad

c. Who will do more push-ups on day 4 ? \qquad
d. How many push-ups will Phillip do on day 8 ? \qquad
e. Is this pattern arithemetic? \qquad Explain \qquad
f. Graph (and label) the table for both boys on the grid to the right.
3. Use tables to evaluate each function when $\mathbf{x}=\{-\mathbf{1}, \mathbf{0}, \mathbf{1}, 2$ and $\mathbf{5}\}$.
a. $m(x)=5^{x}$
b. $h(x)=-3^{x}$
c. $f(x)=3^{x-1}$

x	$m(x)$
-1	
0	
1	
2	
5	

x	$h(x)$
-1	

x	$f(x)$

4. Sketch a graph and label the three functions from above on the grid to the right.

Complete the next two terms of each sequence. Circle is Arithmetic, Geometric, or Neither. If neither, explain why. If Arithmetic or Geometric, circle common difference OR ratio and state it plus write the equations. The first term that is given is $f(0)$.
5. $4,14,24,34,44$, \qquad _, \qquad , . . .

Arithmetic/Geometric/Neither
Common Difference/Ratio: \qquad
Recursive Equation: \qquad
Explicit Equation: \qquad
6. $3,15,75,375$, \qquad , \qquad . . .
Arithmetic/Geometric/Neither
Common Difference/Ratio: \qquad
Recursive Equation: \qquad
Explicit Equation: \qquad

$$
\text { 7. }-1,6,-36,216, \ldots, \ldots, \ldots
$$

Arithmetic/Geometric/Neither
Common Difference/Ratio: \qquad
Recursive Equation: \qquad
Explicit Equation: \qquad
8. $1,4,9,16,25,36$, \qquad ,
\qquad , . . .
Arithmetic/Geometric/Neither
Common Difference/Ratio: \qquad
Recursive Equation: \qquad
Explicit Equation: \qquad
9. Mr. Mann, a math teacher, has a 10% off late homework policy. Each day that an assignment is late a student receives 90% of the credit he or she would have received the day before.
a. Make a table to show the potential credit that can be earned. Use a fraction to show the loss in credit.

x	Pattern	y	Short Hand
0		100	
1		90	
2		81	
3			
4			

b. After how many days would your score for a late assignment drop below 50% ?
c. When will your score reach 0 ? \qquad Explain.
\qquad
d. Write a recursive equation:
e. Write an explicit equation:

Finish each table. Circle "A" if Arithmetic or "G" if Geometric. Circle/list the common difference (d) OR common ratio (r). Write the recursive AND explicit equations in function notation.
10.

Term x	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$	$6^{\text {th }}$	$7^{\text {th }}$	$8^{\text {th }}$
Value $f(x)$	3	8	13	18	23			

A or G d OR r = \qquad Recursive Equation: \qquad Explicit Equation: \qquad

Term x	0	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$	$6^{\text {th }}$	$7^{\text {th }}$
Value $f(x)$	$\frac{3}{2}$	3	6	12	24			

11.

A or G $\quad \mathrm{d}$ OR r $=$ \qquad Recursive Equation: \qquad Explicit Equation: \qquad

