8.1H Function Addition & Subtraction

SHOW YOUR WORK. WORK IN PENCIL.

- 1. Use the graph below of the functions to answer the following questions.
 - a. Fill in the table using the graph below.
 - b. Where does f(x) = g(x)?
 - c. What is f(2) + g(2)?
 - d. What is f(4) + g(4)? ______
 - e. What is g(-2)-f(-2)? _____
 - f. Write the equation for f(x): _____
 - g. Write the equation for g(x):
 - h. Over what interval is g(x) > f(x)?
 - i. Sketch f(x) + g(x) on the same grid and label.
 - j. Sketch f(x) g(x) on the same grid and label.
 - k. Write the equation for f(x) + g(x):
 - 1. Write the equation for f(x) g(x):
- 2. Use the table right to answer the questions.
 - a. What is a(-3) + b(-3)?_____
 - b. What is a(-1) b(-1)?
 - c. What is a(0) + b(0)?
 - d. What is the Domain of *a*(x)? _____
 - e. What is the Range of b(x)?
 - f. Fill in columns for a(x) + b(x) and a(x) b(x).
 - g. Write the equation for a(x) + b(x)
 - h. Write the equation for a(x) b(x)
 - 3. Use the table to the right to answer the following.
 - a. Write the equations for the following functions.
 - i. f(x)=_____
 - ii. g(x)=_____.
 - b. f(-2) + g(-2) =
 - c. g(3) f(3) = _____
 - d. $f(0) \times g(0) =$ _____
 - e. Write the equation for f(x) + g(x) =
 - f. Write the equation for f(x) g(x) =
 - 4. Complete the following based on the graph to the right.
 - a. Where isf(1)? _____
 - b. Where isf(x) = -5? _____
 - c. Where isg(-1)?
 - d. Where isg(x) = -6? _____
 - e. What is the Domain of *f*(x)? _____
 - f. What is the Range of g(x)?

ronowing questions.					
Х	$f(\mathbf{x})$	$g(\mathbf{x})$	$f(\mathbf{x}) + \mathbf{g}(\mathbf{x})$	$f(\mathbf{x}) - g(\mathbf{x})$	$f(\mathbf{x}) g(\mathbf{x})$
-6					
-2					
2					
4					

Х	<i>a</i> (x)	<i>b</i> (x)	$a(\mathbf{x}) + b(\mathbf{x})$	$a(\mathbf{x}) - b(\mathbf{x})$
-3	1	-1		
-1	7	-5		
0	3	-7		
2	8	-11		
7	3	-19		

Name Per:

- 5. Fill in the following table for the three new continuous functions:
 - a. Find *f*(–3): _____
 - b. Find where g(x) = 24: _____
 - c. Find the equation for *f*(x):_____
 - d. Find the equation for *g*(x): _____
 - e. Find the equation for f(x) + g(x):
 - f. Find the equation for f(x) g(x):
 - g. Is *f*(x)×*g*(x) linear? _____ Explain: _____

х	$f(\mathbf{x})$	$g(\mathbf{x})$	$f(\mathbf{x}) + g(\mathbf{x})$	$f(\mathbf{x}) - g(\mathbf{x})$	$f(\mathbf{x}) \times g(\mathbf{x})$
-5	42	-12		54	-504
-4	36	-8			
-3	30	-4			
-2	24	0	24		
-1	18	4			
0	12	8		4	
1	6	12			
2	0	16			0
3	-6	20			
4	-12	24			
5	-18	28			

e. Write the equation for f(x) + d(x)

f. Write the equation for f(x) - d(x)

g. Set up the equation for $f(x) \times d(x)$

h. $f(2) \times d(2)$

- 6. Given the equations $f(\mathbf{x}) = 2\mathbf{x} + 5$ and $d(\mathbf{x}) = 3\mathbf{x} + 2$, find:
 - a. f(2x) =
 - b. d(2a+3) =
 - c. f(1) + d(1) =
 - d. f(2) d(2) =

7. Given the equation $f(\mathbf{x}) = 4\mathbf{x} + 12$.

- a. Fill in the table of values using the equation.
- b. What is *f*(–3)? _____
- c. What is the slope of *f*(x)? _____
- d. What is the y-intercept (vertical shift) of f(x)?
- e. Factor out the slope to see the x-intercept of *f*(x)?
- f. Find the change that would happen to your equation if x became (x + 3). In other words, find f(x + 3)?
- g. What changes would happen to your graph from part f? _____
- h. How would you make all the points on the original line move down 8 units?_____
- i. Write the equation for your new line from part h: _____
- j. Factor out the slope in your equation that would show your new x-intercept ____
- 8. **Construct** a line that is parallel to the line through the given point on the grid to the right. (Do not just count out the slope. Leave your construction marks.)
 - a. Write the equation of your new line.
 - b. What would be the equation of a line perpendicular to your new line and through the given point.

x	f(x)
-2	
-1	
0	
1	
2	
3	