7.1H Angles: Measures and Constructions Name:
\qquad
b. What is $\Varangle 11$? \qquad c. What is $\Varangle 13$?
2. $\angle 13$ and $\angle 14$ are a \qquad pair or \qquad angles. Together, they equal \qquad degrees. If $\Varangle 13=(s-2)^{\circ}$ and $\Varangle 14=(3 s+2)^{\circ}$,
a. What does s equal? \qquad
b. What is $\Varangle 13$? \qquad c. What is $\Varangle 14$? \qquad
3. $\angle 5$ and $\angle 4$ are \qquad angles. Together, they equal \qquad degrees. If $\Varangle 5=(3 b+$ $12)^{\circ}$ and $\Varangle 4=(2 b-22)^{\circ}$
a. What does b equal? \qquad
b. What is $\Varangle 4$? \qquad c. What is $\Varangle 5$? \qquad
4. $\angle 4$ and $\angle 11$ are \qquad
\qquad angles. If $\Varangle 4=[2(4 p-3)-8]^{\circ}$ and $\Varangle 11=(4+2 p)^{\circ}$.
a. What does p equal? \qquad
b. What is $\Varangle 4$? \qquad c. What is $\Varangle 11$? \qquad
5. If $\angle 3$ and $\angle 10$ are \qquad angles, and $\Varangle 3=[-(1-2 g)]^{\circ}$ and $\Varangle 10=(5 g+4 g-8)^{\circ}$.
a. What does g equal? \qquad
b. What is $\Varangle 3$? \qquad c. What is $\Varangle 10$? \qquad
6. If $\angle 4$ and $\angle 12$ are \qquad angles, and $\Varangle 4=(r-4)^{\circ}$ and $\Varangle 12=(3 r-16)^{\circ}$.
a. What does r equal? \qquad
b. What is $\Varangle 4$? \qquad c. What is $\Varangle 12$? \qquad
7. State the relationship between the two angles. Find the value of x.
a.

b.

c.

Complete the constructions below using a compass and straight-edge ONLY. Show all necessary markings.
8. Construct a line segment congruent to the segment below.

10. Construct a line segment whose length is equal to the difference of the lengths of the segments below.

9. Construct a line segment whose length is equal to the sum of the lengths of the two-line segments.

11. Construct a line segment three times longer than the given segment

13. Construct an angle equal to $\angle \mathbf{Q}+\angle \mathbf{R}$ with vertex at P.

$\stackrel{P}{\bullet}$
14. Construct a copy of the angle ABC with a vertex at point P.

.
