$\qquad$

| Targets | Sample | Struggle | Help | Master | Assn |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Create Matrix from data | Organize the data for the drama and <br> X-Country parties into a matrix. |  |  |  | $5.1,5.2,5.3,5 \mathrm{R}$ |
| Add and Subtract Matrices | How many total food items were <br> purchased by group by type. |  |  |  | $5.1,5.2,5.3,5 \mathrm{R}$ |
| Multiply Matrix by a Scalar | Given Matrices A and B, find 2A |  |  |  | $5.2,5.3,5 \mathrm{R}$ |
| Multiply Matrices | Given Matrices A and B, find AB |  |  |  | $5.3,5 \mathrm{R}$ |


| Section | Title | Done? | A Day | B Day |
| :---: | :--- | :---: | :---: | :---: |
| 5.1 | Matrices Intro |  | $10-25$ | $10-26$ |
| 5.2 | Matrix Operations |  | $10-29$ | $10-30$ |
| 5.3 | Multiplying Matrices |  | $10-31$ | $11-1$ |
| $5 R$ | Matrices Review |  | $11-2$ | $11-3$ |
| SG | Matrix Operations Study Guide | $11-2$ | $11-3$ |  |

## Vocabulary

Matrix: $\qquad$
Rows: $\qquad$ Columns:
Dimensions: $\qquad$ Elements:
Adding/Subtracting Matrices: $\qquad$
Multiply Matrices: $\qquad$

## Matrix

A matrix is a rectangular arrangement of numbers or elements in $\qquad$ and columns. Matrix A to the right has two rows ( $r$ ) and three $\qquad$ (c)
written as " $2 \times 3$ " or " $r \times c$ " (read as " 2 by 3 " or " $r$ by $c$ "). Matrix $B$ would be a $\qquad$ $\times$ $\qquad$ matrix.

$$
A=\left[\begin{array}{ccc}
1 & 2 & -1 \\
3 & 4 & -4
\end{array}\right] \quad B=\left[\begin{array}{cc}
\sqrt{1} & \sqrt[3]{27} \\
\frac{4}{2} & 2^{2} \\
-1^{3} & -2(2)
\end{array}\right]
$$

Two matrices are equal if their dimensions are the same and their corresponding elements are equal. Matrices
$A$ and $B$ are NOT equal although they have equal elements. (The element $* A_{23}=-4$. It is NOT equal to element $\mathrm{B}_{23}$ in matrix B because B is NOT a $2 \times 3$ matrix and $\mathrm{B}_{23}$ does not exist.) ${ }^{*} A_{23}$ is saying Matrix $A$ in row 2 and column 3

## Organizing and Reading Data

Organize the data from a problem so that all $\qquad$ represent one classification and columns have another classification. (It does not matter what data goes into rows or columns until performing math operations on those matrices.) If an element in a row represents the price of leashes from a store, all of the elements in that row should represent the prices of at the store. The matrix to the right shows the orders at the

\left.|  |  |  |  |
| ---: | :---: | :---: | :---: |
|  | Fri | Sat | Sun |
| Burgers | 127 | 138 | 106 |
| Hotdogs | 85 | 104 | 98 |
| Fries | 207 | 235 | 214 |
| Drinks | 245 | 306 | 294 |$\right]$ Turf ' N Turf restaurant.

- Explain what each column probably represents. $\qquad$
- Explain what each row probably represents.
- Write the dimensions of the matrix (rows x columns). $\qquad$
- How many elements are in the matrix?
- Which day did they sell the most burgers? $\qquad$
- How many total drinks did they sell on the weekend? $\qquad$


## Adding/Subtracting Matrices

1. When adding/subtracting matrices, they must be the $\qquad$ dimension.
2. Add/subtract each element that is in the same $\qquad$ in the matrices.
3. The sum/difference is a new $\qquad$ .
Example:
$>$ Fill in the blanks for the following matrices.

$$
\left[\begin{array}{ccc}
2 & 8 & -2 \\
6 & -4 & 3 \\
1 & 5 & 9
\end{array}\right]+\left[\begin{array}{ccc}
4 & -3 & 5 \\
-1 & 3 & 2 \\
8 & 7 & -5
\end{array}\right]=\left[\begin{array}{ccc}
6 & 5 & 3 \\
5 & -1 & 5 \\
9 & 12 & 4
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
2 & 8 \\
4 & -3
\end{array}\right]+\left[\begin{array}{cc}
- & 1 \\
-5 & -
\end{array}\right]=\left[\begin{array}{cc}
7 & - \\
- & -9
\end{array}\right]
$$

## Multiplying Matrices ("Scalar multiplication")

Multiply each element of the matrix by the constant. For example, "After taking data over an average weekend, Turf ' N Turf wants to estimate how many items they will sell on each night (Fri, Sat, Sun) for $\mathbf{4}$ weekends."
$4\left[\begin{array}{ccc}127 & 138 & 106 \\ 85 & 104 & 98 \\ 207 & 235 & 214 \\ 245 & 306 & 294\end{array}\right]=\left[\begin{array}{ccc}508 & 552 & 424 \\ 340 & 416 & 392 \\ 820 & 940 & 856 \\ 980 & 1224 & 1176\end{array}\right]$

$$
4\left[\begin{array}{cc}
- & 8 \\
5 & -
\end{array}\right]=\left[\begin{array}{cc}
8 & - \\
& -16
\end{array}\right]
$$

## Fill in the blanks for the above matrices.

The multiplier could also be a fraction. (Dividing by a constant is the same as multiplying by a fraction.) Constants sometimes affect a single row or column, but it must multiply everything in that $\qquad$ or column.

If $A=\left[\begin{array}{lr}-9 & 3 \\ 0 & -1\end{array}\right]$ find $\frac{1}{3} A$
Find $\frac{1}{3} R_{1}$ of matrix A

## Multiplying a Matrix by a Matrix

1. Each row of the first matrix is multiplied by each column of the second matrix.
2. All of the row and column elements are added together to make a new matrix.
a. $\left[\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right] \times\left[\begin{array}{ll}g & j \\ h & k \\ i & l\end{array}\right]=\left[\begin{array}{ll}a g+b h+c i & a j+b k+c l \\ d g+e h+f i & d l+e k+f l\end{array}\right] \quad$ (Yikes! That's a bit overwhelming.)

Consider this example. $\left[\begin{array}{ccc}2 & 5 & 2 \\ -1 & 3 & 8\end{array}\right] X\left[\begin{array}{cc}2 & 7 \\ -4 & 1 \\ 9 & --3\end{array}\right]=\left[\begin{array}{ll}(2)(2)+(5)(-4)+(-2)(9) & (2)(7)+(5)(1)+(-2)(-3) \\ (-1)(2)+(3)(-4)+(8)(9) & (-1)(7)+(3)(1)+(8)(-3)\end{array}\right]$

$$
=\left[\begin{array}{cc}
4+-20+-18 & 14+5+6 \\
-2+-12+72 & -7+3+-24
\end{array}\right]=\left[\begin{array}{cc}
-34 & 25 \\
58 & -28
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
2 & 7 \\
-4 & 1 \\
9 & -3
\end{array}\right]
$$

You can see it more easily if you move your matrices. $\left[\begin{array}{ccc}2 & 5 & -2 \\ -1 & 3 & 8\end{array}\right]\left[\begin{array}{cc}-34 & 25 \\ 58 & -28\end{array}\right]$

Because each element of each $\qquad$ must multiply each element of the columns, the number of elements
in the rows must match the number of elements in the $\qquad$ . In the example above, the $2 \times 3$ matrix was multiplied by the $3 \times 2$. The result is a $2 \times 2$. NOTE: The middle numbers must be the same and the resultant matrix is the outside numbers. $2 \times 3 * 3 \times 2$. The order in which you multiply matrices is very $\qquad$ . (Matrix multiplication is NOT commutative.)

Given: $A=\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]$ and $B=\left[\begin{array}{ll}6 & 7 \\ 8 & 9\end{array}\right] \quad$ Find $\boldsymbol{A B} \quad$ (Show your steps) Find $\boldsymbol{B A}$ (Show your steps)

The answers to your multiplication are shown below. I want to see the steps above for credit.
$A B=\left[\begin{array}{ll}36 & 41 \\ 64 & 73\end{array}\right]$ and $B A=\left[\begin{array}{ll}40 & 53 \\ 52 & 69\end{array}\right]$

## Division of Matrices

You cannot divide matrices. You can either multiply by a fraction constant (see above), or multiply by the inverse of a matrix. We will not be dealing with that at this time.

## Organizing Matrices from Story Problems

Define the variables in the problem and assign rows and $\qquad$ to those variables.

## $>$ Show all your steps to solve the following using matrices.

Mr. Lemen wants to compare shopping for band uniforms consisting of pants and shirts. Each student needs 2 pairs of pants and 3 shirts. He finds the same clothes at both Shopko and Target. At Shopko, the pants cost $\$ 9$ and the shirts cost $\$ 8$. At Target, the shirts are on sale for $\$ 5$ but the pants are $\$ 12$. Set up three different matrices (label). SHOW YOUR WORK to answer the following using those matrices.
a. Define your variables.
b. Create the matrices.
c. How many items will be bought for 45 students?
d. Using the matrix from $a$, show how to calculate the total cost of the 45 sets of uniforms at each store? Shopko

Target
e. Where should he buy his uniforms? $\qquad$ Justify your decision by the work you did above.

