\qquad
\qquad
SHOW YOUR WORK FOR FULL CREDIT. NO WORK, NO CREDIT. NO WORK IN PEN.

If the $\Varangle \mathbf{1}=\mathbf{6 5} \mathbf{5}^{\circ}, \Varangle \mathbf{2}=\mathbf{2 5}{ }^{\circ}, \Varangle \mathbf{3}=\mathbf{1 1 5}{ }^{\circ}$, and $\Varangle 4=115^{\circ}$, fill in the following based on these measurements:
A. Complementary Angles
B. Congruent Angles
C. Supplementary Angles
D. None of these

1. $\angle 1$ and $\angle 2$ are \qquad
2. $\angle 1$ and $\angle 4$ are \qquad 5. $\angle 3$ and $\angle 4$ are \qquad
3. $\angle 1$ and $\angle 3$ are \qquad 4. $\angle 2$ and $\angle 3$ are \qquad
IF $\boldsymbol{l} \| \boldsymbol{m}$, give an example of each set of angles (from the image below) Circle if the angles would be congruent or supplementary.
4. Alternate Interior Angles: $\angle C$ and \qquad Congruent Supplementary
5. Alternate Exterior Angle $\angle H$ and \qquad Congruent Supplementary
6. Same Side Interior $\angle D$ and \qquad Congruent Supplementary
7. Same Side Exterior $\angle B$ and \qquad Congruent Supplementary
8. Vertical $\angle G$ and \qquad
9. Corresponding $\angle F$ and \qquad
10. a. Supplementary $\angle E$ and \qquad
Congruent Supplementary
Find two relationships
b. Supplementary $\angle E$ and \qquad
11. a. Adjacent $\angle H$ and \qquad Find two relationships
b. Adjacent $\angle H$ and \qquad

12. Linear Pair $\angle D$ and \qquad Congruent Supplementary

Name the relation of the angles that are marked (Do not just say congruent or supplementary). Then find \mathbf{x}, and find ALL angle measures.

Rel: \qquad $x=$ \qquad Rel: \qquad $\mathrm{x}=$ \qquad Rel: \qquad $\mathrm{x}=$ \qquad
18. Given the following right triangles, find the EXACT missing side lengths. Simplify if possible. No decimals.
a.

b.

Use the figure to the right below to answer the following questions. In this figure line l is parallel to line \boldsymbol{m} and line \boldsymbol{o} is perpendicular to line \boldsymbol{m}. SYW. Each question is independent from the others.
Example: If $\Varangle 11$ and $\Varangle 13$ are vertical angles (the relationship), the angles are (congruent).
(So we know that $\angle 11$ must equal $\angle 13$). If $\Varangle 11=[-3(2 x-5)]^{\circ}$ and $\Varangle 13=(-14 x-17)^{\circ}$.
a. What does x equal? __-4_
b. What is the measure of $\Varangle 11 ?$
c. What is the measure of $\Varangle 13$? 3°

$$
\begin{aligned}
-3(2 x-5) & =-14 x-17 \\
-6 x+15 & =-14 x-17 \\
8 x & =-32 \\
x & =-4
\end{aligned}
$$

19. If $\Varangle 13$ and $\Varangle 14$ are a \qquad pair, together they $=$
\qquad . If $\Varangle 13=(s-2)^{\circ}$ and $\Varangle 14=(3 s+2)^{\circ}$
a. What does s equal? \qquad
b. What is $\Varangle 13$? \qquad
c. What is $\Varangle 14$? \qquad

20. If $\Varangle 4$ and $\Varangle 11$ are \qquad interior angles, the angles are \qquad .
If $\Varangle 4=[2(4 p-3)-8]^{\circ}$ and $\Varangle 11=(4+2 p)^{\circ}$.
a. Solve for p . \qquad
b. What is $\Varangle 4$? \qquad
c. What is $\Varangle 11$?
21. If $\Varangle 13$ and $\Varangle 1$ are alternate \qquad angles, they are \qquad .
If $\Varangle 13=(-1+2 g)]^{\circ}$ and $\Varangle 1=(5 g+4 g-8)^{\circ}$
a. Solve for g . \qquad
b. What is $\Varangle 13$? \qquad
c. c. What is is $\Varangle 1$? \qquad
22. If $\Varangle 4$ and $\Varangle 12$ are \qquad angles, the angles are \qquad .
If $\Varangle 4=(r-4)^{\circ}$ and $\Varangle 12=(3 r-16)^{\circ}$.
a. Solve for r . \qquad
b. What is $\Varangle 4$? \qquad
c. What is $\Varangle 12$? \qquad
23. From the figure above, if $\angle 4=\angle 5$, find and explain how do you know.
a. $m \angle 1=$ \qquad ․ HDYK
\qquad
b. $m \angle 12=$ \qquad ․ HDYK
c. $m \angle 13=$ \qquad ․ HDYK
