Solution: _____

4D Systems of Equation: Elimination Name: ______
 Per: _____

 SHOW YOUR WORK FOR FULL CREDIT. NO WORK, NO CREDIT. NO WORK IN PEN.
 Per: ______

OBJECTIVE: Find solution(s) from a system of equations by Elimination.

Use the **ELIMINATION** method to solve the systems (rewrite as needed). The first one is done for you.

Add the equations to eliminate the y and find x. $Ex: \begin{cases} 3x + 3y = 6\\ 5x - 3y = 18\\ 8x = 24\\ x = 3 \end{cases}$	$1 \cdot \begin{cases} -4x - 2y = 2\\ 16x + 2y = 10 \end{cases}$	$2 \cdot \begin{cases} -x + 4y = -10 \\ 7x + 4y = 22 \end{cases}$	Hint: Multiply one of the equations by a negative.
Now, let's find y. 3(3) + 3y = 6 $9 + 3y = 6$ $-9 = -9$ $3y = -3$ $y = -1$			
Solution: $(3, -1)$ Check : $3(3) + 3(-1) = 6$ 9 - 3 = 6 5(3) - 3(-1) = 18 15 + 3 = 18	Solution: Check :	Solution: Check :	
3. $\begin{cases} 6x + 4y = 12\\ 5x - 4y = 10 \end{cases}$	4. $\begin{cases} -8x - 2y = -4 \\ -6x + y = 7 \end{cases}$ Hint: Make the x's or y have the san coefficient.	$\sum_{ne}^{5} 5. \begin{cases} x - y = 10 \\ 7x + 5y = 22 \end{cases}$	

Check :	Check :	Check :
$ 6. \begin{cases} 2x + 2y = 17\\ -4x + 2y = 20 \end{cases} $	7. $\begin{cases} -y - 2x = 6\\ 4y + 8x = -24 \end{cases}$	8. $\begin{cases} -3x + 2y = 7 \\ -y + x = 2 \end{cases}$

Solution: _____

Solution:	Solution:	Solution:
Check :	Check :	Check :

Solution: _____

12. The following equations represent the money collected from VHMS concert tickets sales during two different evening performances. Describe each part of the equations in the boxes.

- b. *a* = _____ *s* = _____
- c. What does your solution represent?
- 13. David and Chris are selling fruit for a school fundraiser. Customers bought only small boxes of oranges and large boxes of oranges. David sold 3 small boxes of oranges and 14 large boxes of oranges for a total of \$203. Chris sold 11 small boxes of oranges and 11 large boxes of oranges for a total of \$220.
 - a. Define your variables.
 - b. Write two equations
 - c. Solve the system.
 - d. Cost of one small box of oranges_____
 Cost of one large box of oranges _____