\qquad
SHOW YOUR WORK FOR FULL CREDIT. NO WORK, NO CREDIT. NO WORK IN PEN.

1. A function is a rule that assigns to each input exactly one \qquad .
2. Mrs. Daley asked her students how many pets they have. Some responses are shown in the table below.

Student number (x)	1	2	3	5	8	13	21
Number of Pets (y)	3	1	0	3	2	3	7

Is the relation a function? \qquad Explain
3. Mrs. Burton asked her students how tall they were and organized the data by age.

Student Age (x)	15	12	13	14	12	11	16
Height (y)	$5^{\prime} 5^{\prime}$	$5^{\prime} 1^{\prime \prime}$	$5^{\prime} 9^{\prime \prime}$	$6^{\prime} 1^{\prime \prime}$	$4^{\prime} 11^{\prime \prime}$	$4^{\prime} 10^{\prime \prime}$	$5^{\prime} 10^{\prime \prime}$

Is the relation a function? \qquad Explain. \qquad

Are the following relations functions? Explain. Then tell if the relation is continuous or discrete.
4.

Is the relation a function? \qquad
Explain: \qquad
Is it continuous or discrete?

6.

Is the relation a function? \qquad Is the relation a function?

Explain: \qquad Explain: \qquad
Is it continuous or discrete?

Is it continuous or discrete?
7. $\{(-3,-7),(-1,-3),(4,-7),(2,3),(4,7)\}$

Is the relation a function? \qquad Explain: \qquad
Is it continuous or discrete? \qquad
8. $\{(0,1),(3,-3),(1,2),(-4,8),(2.5,7)\}$

Is the relation a function? \qquad
Explain: \qquad
Is it continuous or discrete? \qquad
9. Express the relation of the ordered pairs as a table AND graph.
$\{(4,5),(-3,-2)(2,5)(0,-4),(1,3),(2,0)\}$

Is it continuous or discrete? \qquad
Should you connect the points on your graph?

Explain \qquad

x	$f(x)$

10. Is the above relationship a function? \qquad Explain \qquad

Evaluate the functions at the given numbers:
11. $f(x)=3 x-8$
a. $f(1)=$ \qquad
12. $g(x)=-9-5 x$
a. $g(-3)=$ \qquad
13. $h(x)=x^{2}+1$
b. $f(-3)=$ \qquad b. $g(0)=$ \qquad
a. $h(-2)=$ \qquad
c. $f(5)=$ \qquad c. $g(4)=$ \qquad
b. $h(0)=$ \qquad
d. $f(0)=$ \qquad d. $g(6)=$ \qquad
c. $h(1)=$ \qquad
e. $f(x)=-2$, \qquad e. $g(x)=21$, \qquad
d. $h(3)=$ \qquad
e. $h(x)=26$, \qquad
14. Match each story with a graphical representation. Tell if the representation is discrete or continuous.
I. The number of ice cream cones sold on a hot summer day tracked by the hour.
II. The amount of money in a bank account where money is frequently deposited and occasionally withdrawn.
III. The amount of air in a person's lungs.
IV. The elevation of a hiker as he hikes a mountain.

15. Given $f(x)=3-4 x$.
a. Fill in the table
b. Sketch a graph.
c. Is the relation a function? \qquad Explain: \qquad

\boldsymbol{x}	$\boldsymbol{f (x)}$
-3	
-2	
0	
1	
	-5

d. Is it discrete or continuous? \qquad
16. Using the following statements:

a. Translate the following into coordinate points.
i. $\quad f(-1)=1$
——__
iii. $f(1)=-1$
ii. $\quad f(2)=7$ \qquad iv. $\quad f(3)=0$
\qquad
b. Graph the points.
c. Is your graph a function? \qquad
Explain: \qquad
d. Is it discrete or continuous? \qquad

17. Batman throws a batstar at the Joker. Gordon calculates the height of the batstar in flight by the formula $H(t)=-16 t^{2}+96 t+112$ where the H is the height in feet and t is the time is in seconds.
a. Find $H(2)$ \qquad What does $H(2)$ mean? \qquad
b. What does $H(t)=256$ mean? \qquad
Extra Credit: Find t when $H(\mathrm{t})=256$ \qquad

