\qquad

Graph the following inequalities. Make sure you test a point to know which side of the line you shade.

1. $2 x+3 y>12$
x-intercept:
y-intercept: \qquad
Test Point: \qquad

2. $\frac{1}{2} x-2 y \geq 2$

3. $5 x+3 y<15$
x-intercept: \qquad
y-intercept: \qquad
Test Point: \qquad

4. $-2 y>\frac{2}{3} x-8$

5. $y+6>2(x+3)$
x-intercept: \qquad
y-intercept: \qquad
Test Point: \qquad

6. $2 y+2 \leq-(x-4)$

7. Looking at \#6 above, answer the following questions.
a. Is the point $(2,2)$ part of your solution set? \qquad Explain
b. Is the point $(-2,2)$ part of your solution set? \qquad Explain.
c. Is the point $(-2,-2)$ part of your solution set? \qquad Explain.
d. Is the point $(2,-2)$ part of your solution set? \qquad Explain.

Solve the following inequalities for s
8. $-8 s^{2}>-6(8 b+4)$
9. $s+4 w-5 \leq-25+3(2 w+5)$
10. $5-\left(7+2 s^{2}\right)-2 d^{2}>d^{2}+10$
11. $A=1 / 2 s h$
12. $K=\frac{a s+b c}{b d}$
13. $s r+h=s q-t$

VHMS is planning their next school play. They will charge $\$ 2$ per child ticket and $\$ 5$ per adult tickets.
14. Find the number of each type of ticket sold to make exactly $\mathbf{\$ 2 0 0 0}$. Show your work the following ways:
a. Table

child	adult
0	
	0
300	

b. Equation (EC. Write your equation in two different forms.)
c. Graph.

d. On your graph above, graph the solutions if they must make at least $\mathbf{\$ 2 0 0 0}$ on the play.

Use the inequality 28-4x<2(y-x) for \#20-23.
15. Describe your graph including at least 3 important details. \qquad

16 . Is $(2,7)$ part of the solution set? \qquad Explain. \qquad
17. Is $(3,8)$ part of the solution set? \qquad Explain. \qquad
18. Martha works in a shoe store and receives less than $\$ 25$ per day plus $\$ 5.00$ for each pair of shoes that she sells. Show your work in a table, inequality and graph.
a. Inequality: \qquad
b. Table:
c. Graph

\# of shoes	Total \$
0	
5	
15	

Write the inequality for the following graphs. Then graph the second inequality on the same grid.
19. \qquad

Graph $y \geq x-1$

Graph $-2 y+6<x$

Graph $2 x-4 y \geq 8$

Write the following with the lowest REAL integer radicand.
21. $\sqrt{-144}$
23. $\sqrt{50}$
24. $\sqrt{512}$
25. $\sqrt{613}$
26. $\sqrt[3]{27}$
27. $\sqrt[3]{8}$

