Name **1C Interception** Per: NO WORK, NO CREDIT. PENCIL ONLY. Due: August 30th / August 31st **Objective:** Determine x- and y- intercepts Find the y-intercept from the tables: Don't forget to list as a coordinate point. **EXAMPLE:** For EC, find x-intercepts. Х 3. 1. 2. 2 5 Х Y Х Y 4 < > 8 Х Y 13 --2 -33 7 1 23 5 21 -6 4 13 9 6 4 21 Slope = -20 -7 7 15 3 19 y = -2x + b5 = -2(2) + b5 = -4 + b+4 = +49 = by-intercept = (0, 9)Find the slope and intercepts from the following points and then write the equation of the line that goes through the two given points. EX: (0, 3) and (2, 7) 4. (3, 6) and (0, 8) 5. (3, 7) and (6, 13) 6. (4, 8) and (2, 5) X Y 0 3 7 2 Slope: $\frac{2}{1}$ or 2 Slope: _____ Slope: _____ Slope: _____ y-intercept: (0, 3)y-intercept: _____ y-intercept: _____ y-intercept: _____ x-intercept: $\left(-\frac{3}{2}, 0\right)$ x-intercept: _____ x-intercept: _____ x-intercept: Eq: y = 2x + 3Eq:_____ Eq:_____ Eq:_____ Find the equation from the given point and slope. EX: Slope = 2 & point (6, 1)7. $m = \frac{1}{2} \& point (4, -2)$ 8. $m = -5 \& \text{point}(\frac{1}{5}, 8)$ 1 = 2(6) + b1 = 12 + b, so, b = -11y = 2x - 11Find the y-intercept and x-intercept of the following equations: 6x + y = -3**EXAMPLE:** 9. y = -18 - 2x10. 3x + 6 = yy-intercept is x-intercept is when x = 0. when y = 0, 6(0) + y = -36x + 0 = -3y-intercept : _____ y-intercept : _____ $6x = -3, x = -\frac{1}{2}$ y = -3x-intercept :_____ x-intercept : _____ x-int: $(-\frac{1}{2}, 0)$ y-int: (0, -3)11. 3x + 5y = -1512.4x - 12y = 1613. 8v + 6x = 2y-intercept : _____ y-intercept : _____ y-intercept: _____ x-intercept : _____ x-intercept : _____ x-intercept:

Find the slope, y-intercept and equation of the line in the following graphs:

17. Aaron and Xavier are going to meet at the Westlake tennis court. They leave their houses at the same time. Xavier jogs 300 meters to the court and passes Aaron's house after 100 m. Xavier's jogging rate is 4 meters per second. Aaron's walking rate is 2 meters per second. Draw a map to show the houses and the court (use box to right).

a. Fill in the two tables to show their distance from the tennis courts at any given time.

Xavier					Aaron			
Time	Pattern					Dist	Shorthand	
(secs)						(meters)		
		300		0				
		292						
					200 - 2 - 2 - 2			
		D		S				

b. Write the starting coordinates for Xavier _____ Aaron _____

c. Graph the data your tables on the grid. What are the two rates of change shown on the graph?

- d. What is the unit walking rate for Xavier? _____ Aaron? _____
- e. Xavier's line is steeper on the graph. Explain what this means?
- f. How can you measure the rates of change on the graph?
- g. How many seconds will it take them to reach the court? Xavier _____ Aaron _____

h. What does the x-intercept mean? ______ What is Aarons? _____ What is Xavier? ______

