Unit 11H: Triangles \& Congruence Study Guide Name:
Per:
UNIT 11 Triangles and Distance

UNIT 11 Triangles and Distance					
Assn	Learning Objective	A Day	B Day	Done	Core Std
11SG	Triangles and Distance				
11.1	Perimeter, distance and basic symbols	Mar 8	Mar 11		
11.2	SSS, SAS	Mar 12	Mar 13		
11.3	ASA, AAS, and CPCTC	Mar 14	Mar 15		
11.4	Prove It!	Mar 18	Mar 19		
11.5	PROOFS PART 2???	Mar 20	Mar 21		
11R	Unit 11 Review	Mar 22	Mar 25		
	Unit 11 EMT (Hand out $12 \mathrm{B4A}$)	Mar 26	Mar 27		

Targets	Sample Question	Ugh?	Meh	Got it	Assn	
Use basic symbols about segments, angles, parallel, perpendicular and congruent	$\overline{A B} \cong \overline{C D}, \overline{A B} \\| \overline{C D}, \overline{A B} \perp \overline{C D}$, $\angle A \cong \angle B . \Delta A B C \cong D E F$			11.1,		
Triangle congruence (ASA, AAS, SSS, SAS)	Explain why (not) the triangles are (not) congruent			$11.1-$ Complete a two-column proof	Given the following image, prove that the triangles are congruent using a two-column proof.	
Use the Pythagorean Theorem to find the perimeter of polygons	Find the perimeter of the given image.			$11.2-$ 11 R		

Vocabulary

Pythagorean Theorem:
Perimeter: \qquad
Triangle Inequality Theorem:
Congruent: \qquad
Similar: \qquad
СРСТС: \qquad

Finding the perimeter of a polygon on a grid: You can use the Pythagorean Theorem $\left(a^{2}+b^{2}=c^{2}\right)$ to find the \qquad of each side. (Use slope triangles with the polygon sides.) Add the side lengths to find the \qquad of shape ABCDE.
$\overline{A B}==\sqrt{3^{2}+4^{2}}=\sqrt{9+16}=\sqrt{25}=5$
$\overline{B C}=$ \qquad $=$ \qquad $\overline{C D}=$ \qquad $=$ \qquad
$\overline{D E}=$ \qquad $=$ \qquad
$\overline{E A}=$ \qquad $=$ \qquad
Add all of the lengths: \qquad $+$ \qquad $+$ \qquad $+$ \qquad $+$ \qquad the perimeter of the polygon:

Triangle Inequality: The sum of the lengths of any two sides of a triangle is \qquad than the length of the third side. State if the three numbers can be the measures of the sides of a triangle. Explain
a. $18,12,7$
b. $12,6,6$
c. $10,11,23$

Triangle Sum Theorem The sum of all three angles of a triangle $=$ \qquad ${ }^{\circ}$. Find the angles for the triangle to the right.

Corresponding Parts of Congruent Triangles are Congruent (CPCTC)
Mark the triangles to show congruence based on the names theorem with proper congruent marks.

Side-Side-Side (SSS) Congruence If three sides of one triangle are congruent to three sides of second triangle, then the two triangles are \qquad	SSS $\Delta A B C \cong \Delta \mathrm{~L}$ \qquad
Side-Angle-Side (SAS) Congruence If two sides and the included angle of one triangle are congruent to two sides and the included angle of a \qquad triangle, the two triangles are congruent.	SAS $\Delta Z E D \cong \Delta_{-}$ \qquad D
Angle-Side-Angle (ASA) Congruence If two angles and the included side of one triangle are congruent to two angles and the \qquad side of a second triangle, then the two triangles are congruent.	$\frac{\mathbf{A S A}}{\Delta I I D} \cong \Delta$ \qquad
Angle-Angle-Side (AAS) Congruence If two angles and a non-included side of one triangle are congruent to two angles and the corresponding non-included side of a \qquad triangle, then the two triangles are congruent.	$\frac{\mathbf{A A S} \text { or } \mathbf{S A A}}{\Delta U T S \cong}$
Side-Side-Angle (SSA) This DOES NOT prove congruence.	$\underline{\text { SSA or ASS }}$ Example of WHY NOT.
Angle-Angle-Angle (AAA) This DOES NOT prove congruence. Triangles are \qquad . Triangle sides will have a common ratio.	$\underline{\mathbf{A A A}}$ or AAA Example of WHY NOT.

Two-Column Proofs Mostly require practice justifying EVERYTHING IN ORDER. Use the given information and the following image. Fill in the blanks to complete the proof. (See Assn 11.2-11.4 for practice.)
Given: $\angle G \cong \angle I ; \overline{F H}$ bisects $\angle G F I$
Prove: $\triangle G F H \cong \triangle I F H$

Statements	Reasons
1. $\angle G \cong \angle I ; \overline{F H}$ bisects $\angle \mathrm{GFI}$	1.
2. $\angle G F H \cong \angle I F H$	2. Def. of
3.	3. Reflexive Prop.
4.	4.

