Unit 11H: Triangles & Congruence Study Guide Name: ______Per: _____

	UNIT 11 Triang	es and Distance			
Assn	Learning Objective	A Day	B Day	Done	Core Std
11SG	Triangles and Distance				
11.1	Perimeter, distance and basic symbols	Mar 8	Mar 11		
11.2	SSS, SAS	Mar 12	Mar 13		
11.3	ASA, AAS, and CPCTC	Mar 14	Mar 15		
11.4	Prove It!	Mar 18	Mar 19		
11.5	PROOFS PART 2???	Mar 20	Mar 21		
11 R	Unit 11 Review	Mar 22	Mar 25		
	Unit 11 EMT (Hand out 12 B4A)	Mar 26	Mar 27		

Targets	Sample Question	Ugh?	Meh	Got it	Assn
Use basic symbols about segments,	$\overline{AB} \cong \overline{CD}, \overline{AB} \parallel \overline{CD}, \overline{AB} \perp \overline{CD},$				11.1,
angles, parallel, perpendicular and	$\angle A \cong \angle B. \ \Delta ABC \cong DEF$				11.2
congruent					
Triangle congruence (ASA, AAS,	Explain why (not) the triangles are (not)				11.1-
SSS, SAS)	congruent				11 R
	Given the following image, prove that the				11.2-
Complete a two-column proof	triangles are congruent using a two-column				11R
	proof.				
Use the Pythagorean Theorem to find	Find the perimeter of the given image.				11.1,
the perimeter of polygons	The me permeter of the given image.				11.4

Vocabulary

ythagorean Theorem:	
erimeter:	
riangle Inequality Theorem:	
ongruent:	
milar:	
РСТС:	

Finding the perimeter of a polygon on a grid: You can use the Pythagorean Theorem $(a^2 + b^2 = c^2)$ to find the ______ of each side. (Use slope triangles with the polygon sides.) Add the side lengths to find the _____ of shape ABCDE. $\overline{AB} = =\sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5$ *BC* =_____ = ____ <u>CD</u> =_____ = _____ B (9, 5) <u>DE</u> =_____ = _____ *EA* =_____ = _____ Add all of the lengths: _____ + ____+ ____+ ____+ _____+ the perimeter of the polygon:_____

Triangle Inequality: The sum of the lengths of any two sides of a triangle is ______ than the length of the third side. State if the three numbers can be the measures of the sides of a triangle. Explain a. 18, 12, 7 b. 12, 6, 6 c. 10, 11, 23

Triangle Sum Theorem The sum of all three angles of a triangle =_____⁰. Find the angles for the triangle to the right.

Corresponding Parts of Congruent Triangles are Congruent (CPCTC)

Mark the triangles to show congruence based on the names theorem with **proper** congruent marks.

Side-Side (SSS) Congruence	
If three sides of one triangle are congruent to three sides of second triangle, then the two triangles are	$\Delta ABC \cong \Delta L \{c} \land \{B} \land \{N}$
Side-Angle-Side (SAS) Congruence	
If two sides and the included angle of one triangle are congruent to two sides and the included angle of a triangle, the two triangles are congruent.	$\Delta ZED \cong \Delta \D$
Angle-Side-Angle (ASA) Congruence	ASA <u>^</u>
If two angles and the included side of one triangle are congruent to two angles and the side of a second triangle, then the two triangles are congruent.	$\Delta JID \cong \Delta _ \qquad \qquad$
Angle-Angle-Side (AAS) Congruence	AAS or SAA
If two angles and a non-included side of one triangle are congruent to two angles and the corresponding non-included side of a triangle, then the two triangles are congruent.	$\Delta UTS \cong \qquad $
Side-Side-Angle (SSA)	SSA or ASS Example of <u>WHY NOT</u> .
This DOES NOT prove congruence.	<u></u>
Angle-Angle (AAA)	AAA or AAA Example of WHY NOT.
This DOES NOT prove congruence. Triangles are Triangle sides will have a common ratio.	

Two-Column Proofs Mostly require practice justifying EVERYTHING IN ORDER. Use the given information and the following image. Fill in the blanks to complete the proof. (See Assn 11.2-11.4 for practice.)

Statements	Reasons
1. $\angle G \cong \angle I$; \overline{FH} bisects $\angle GFI$	1.
2. ∠GFH ≅ ∠IFH	2. Def. of
3.	3. Reflexive Prop.
ŧ.	4.

