U10H Construct \& Transform Study Guide
Name:
Per: \qquad

Vocabulary

Bisect:
Perpendicular Bisector: \qquad
Angle Bisector: \qquad
\qquad
Line of Symmetry:
Diagonal:
\qquad

Rotational Symmetry: \qquad
Rigid Transformations: \qquad
Translation: \qquad
Reflection: \qquad
Rotation: \qquad

Symmetry

The \qquad of symmetry in a geometric figure splits the figure in half and reflects the figure onto \qquad —. A figure that can be copied onto itself by rotating it said to have rotational of the image.

An equilateral triangle has 3 lines of symmetry. How many lines of symmetry does a rectangle have? \qquad Draw them:

A pentagon can be carried onto itself \qquad times with ____degree rotations. What degree rotation carries a parallelogram onto itself?

For the trapezoid, find the following:

\# Lines of Symmetry: \qquad \# of Diagonals: \qquad Angle of Rotation: \qquad

Construct a Perpendicular Bisector

Make a Segment Method

1. Draw a line segment and place \qquad points on the line (or use the endpoints of the segment).
Label these points A and B.
2. Place the needle of the \qquad on point A and the pencil end more than halfway between the points.
3. Make an \qquad .
4. Repeat steps $2 \& 3$ with the point of the \qquad on point B.
5. Connect the intersection points of the two arcs.

Make a Kite Method

1. Make a dot (or use the given dot).
2. Measure the distance from the end of the segment to the dot with your compass and make an arc.
3. Repeat from the other end of the segment.
4. Connect the intersection points of the two arcs.

Construct
perpendicular line passing through the point
a perpendicular bisector.

Construct an Angle Bisector

1. Given an \qquad $\angle A B C$.
2. Create an \qquad that intersects $\overline{A B}$ and $\overline{A C}$.
3. From one \qquad point, construct an arc on the inside of the angle.

4. Repeat step 4 with the other \qquad point.
5. Connect the intersection point of the two arcs with the vertex of the \qquad .

Construct the Angle Bisectors for the angles below.

Transformations: There are 4 main kinds of transformations:

translation, reflection, rotation, and dilation.

The first 3 all preserve size AND proportion so the figures are congruent. These are called rigid transformations.

Translation: (or " \qquad ".) is written like $(x+2, y-1)$ "slides" the figure two units to the right $[(x+2)]$ and down one unit $[(y-1)]$. Notice that the lines CC' and EE' are parallel since all points move in the same \qquad (have them same slope).

$>$ Complete the rigid transformations on the triangle. Label it $A B C$.

1. Rotate $270^{\circ} \mathrm{CCW}$ about the origin and label $\Delta A^{\prime} B^{\prime} C^{\prime}$
2.

Reflect over $y=-x$, label $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$
3.

$>\quad$ Use $\triangle D E F$ and $\Delta D^{\prime} E^{\prime} F^{\prime}$.

1. Draw the lines that connects E to $\mathrm{E}^{\prime}, \mathrm{D}$ to D^{\prime} and F to F '.
2. What do you know about these lines?
3. Construct (compass and straightedge) the line of reflection for the two triangles.
4. What do you know about the line of reflection and the lines that you connecting the points? \qquad
> Mark all the points of rotation that take A onto B.
> Find the equation for that line ALGEBRAICALLY.

EC. Find the point of rotation that takes A onto B onto C.

Translate the image $(x+2, y-10)$ and label $\Delta A^{\prime \prime \prime} B^{\prime \prime \prime} C^{\prime \prime \prime}$

