10B Slide to the Left, Slide to the Right

SHOW YOUR WORK AND WORK IN PENCIL

OBJECTIVE: Translating an image and construct angle bisector.

Use the translation rule of $(x, y) \rightarrow (x + 5, y - 9)$ for the following questions. 3. What are the coordinates of C' if C is (5, -3)?

- 1. What are the coordinates of A' if A is (-6, 3)?
- 2. What are the coordinates of B' if B is (4, 8)?
- 4. What are the coordinates of **D** (the pre**image**) if D' is (12, 7)?

Due Date: March 14th / March 15^{th J}

The vertices of $\triangle ABC$ are A (-6, -7), B (-3, -10) and C (5, 2). Find the vertices of $\triangle A'B'C'$ given the following translations rules below.

5. $(x, y) \rightarrow (x - 2, y - 7)$

Write the translation rule for the followings:

7. FUHP is the pre-image and F'U'H'P' is image.

- 6. $(x, y) \rightarrow (x + 11, y + 4)$ A'_____ B'_____ C'____ A'____ B'____ C'____
 - 8. *DRYZ* is the pre-image and D'R'Y'Z' is image.

Graph the image of the figure using the transformation given. Make sure that you label your new image.

- 9. Translate 5 units up and 3 to the right.
 - a. Write the translation rule:

10. Translation the image: $(x, y) \rightarrow (x - 2, y + 6)$. a. Write the new coordinates points for the new image.

- 11. The coordinates of quadrilateral QUAD are Q(-6,1), U(-3,7), A(4,-2) and D(1,-8). Translate QUAD to the left 3 units and down 7 units write the coordinates for Q', U', A' and D'.
 - a. Q'_____ U'____ A'____ D'_____
 - b. Write the translation rule.

Name: ______Per: ____

12. Construct a copy of the given angles and then bisect the angles that you constructed.

13. Solve the Pythagorean Theorem for the given variable: a. Solve for $a: a^2 + b^2 = c^2$ b. Solve for $b: a^2 + b^2 = c^2$

Use the following images to write the equation for its perpendicular bisector and then CONSTRUCT the perpendicular bisector. Extra Credit: Use the Pythagorean Theorem to find the distance of the given line segment.

