\qquad Per: SHOW YOUR WORK AND WORK IN PENCIL

OBJECTIVE: Translating an image and construct angle bisector.
Use the translation rule of $(x, y) \rightarrow(x+5, y-9)$ for the following questions.

1. What are the coordinates of A^{\prime} if A is $(-6,3)$?
2. What are the coordinates of B^{\prime} if B is $(4,8)$?
3. What are the coordinates of C^{\prime} if C is $(5,-3)$?
4. What are the coordinates of \boldsymbol{D} (the preimage) if D^{\prime} is $(12,7)$?

The vertices of $\triangle \mathrm{ABC}$ are $\mathrm{A}(-6,-7), \mathrm{B}(-3,-10)$ and $C(5,2)$. Find the vertices of $\Delta A^{\prime} B^{\prime} C^{\prime}$ given the following translations rules below.
5. $(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{x}-2, \mathrm{y}-7)$
\qquad B^{\prime} \qquad C^{\prime} \qquad A^{\prime} \qquad B^{\prime} \qquad C^{\prime} \qquad

Write the translation rule for the followings:

7. $F U H P$ is the pre-image and $F^{\prime} U^{\prime} H^{\prime} P^{\prime}$ is image.
8. $D R Y Z$ is the pre-image and $D^{\prime} R^{\prime} Y^{\prime} Z^{\prime}$ is image.

Graph the image of the figure using the transformation given. Make sure that you label your new image.
9. Translate 5 units up and 3 to the right.
a. Write the translation rule:

10. Translation the image: $(x, y) \rightarrow(x-2, y+6)$.
a. Write the new coordinates points for the new image.

11. The coordinates of quadrilateral QUAD are $Q(-6,1), U(-3,7), A(4,-2)$ and $D(1,-8)$. Translate QUAD to the left 3 units and down 7 units write the coordinates for $Q^{\prime}, U^{\prime}, A^{\prime}$ and D^{\prime}.
a. Q^{\prime} \qquad U^{\prime} \qquad A^{\prime} \qquad D^{\prime} \qquad
b. Write the translation rule. \qquad
12. Construct a copy of the given angles and then bisect the angles that you constructed.

13. Solve the Pythagorean Theorem for the given variable:
a. Solve for $a: a^{2}+b^{2}=c^{2}$
b. Solve for $b: a^{2}+b^{2}=c^{2}$

Use the following images to write the equation for its perpendicular bisector and then CONSTRUCT the perpendicular bisector. Extra Credit: Use the Pythagorean Theorem to find the distance of the given line segment.

